Aerosol delivery and Mechanical Ventilation: *In vitro* evaluation of spacers for use with a pressurized-metered dose inhaler (pMDI) and a vibrating mesh nebulizer (VMN) in comparison with T adapters.

M. Eckes, B. Demoueux, B. Hervieu, A. Paris, A. Vanlaeys, T. Porée

LABORATOIRE OPTIMHAL-PROTECSOM – VALOGNES (FRANCE)

Contacts: meckes@laboprotecsom.com; tporee@laboprotecsom.com

Introduction

Efficiency of drug delivery during mechanical ventilation is affected by many factors such as for example the type of inhalation devices [1]. Both VMNs and pMDIs can be used to administer aerosolized medication to the lungs. pMDIs are recommended to be used with spacers [2] and nebulizers are usually used with T adapters.

Objective: To evaluate in vitro performances of spacers in comparison with T adapters when using both a pMDI and a VMN in an adult and paediatric mechanical ventilation model.

Material and Methods

A ventilator (Evita 2 Dura, Dräger) was connected to a test lung model (SmartLung Adult, IMT Medical). An endotracheal tube (ETT) (7.5 mm ID for the adult model and 4.5 mm ID for the paediatric model) and a right-angle elbow adapter were inserted between the Y-piece and the ETT. Delivered dose was collected on a filter inserted between the ETT and the test lung model. Spacers and T adapters were inserted into the inspiratory limb excepted Aerochamber Min® inserted after the Y piece as recommended by the manufacturer.

Two different series of measurements were performed:

- **With a pMDI**: 10 doses containing 100 µg of salbutamol were administered in the inhaler devices during inspiratory phases.
- **With a VMN**: A solution containing 5 mg of salbutamol (2.5 mg/2.5 mL) was nebulized with the VMN Aeroneb SoLo® (Aerogen).

Measurements were performed with adult settings (tidal volume 450 mL, frequency 15 min⁻¹, Positive End Expiratory Pressure (PEEP) 5 cmH₂O, ratio between inspiratory and expiratory 1:2) and paediatric settings which correspond to a child of 15 kg weight (tidal volume 150 mL, frequency 25 min⁻¹, PEEP 5 cmH₂O, ratio between inspiratory and expiratory 1:1). Each component of the circuit was recovered with a NaCl solution (0.1 M) and quantified by UV spectrophotometry at 225 nm. Statistical analyses were performed using GraphPad Prism 6.01 (GraphPad software, CA) and consisted of t-tests. A p value < 0.05 was considered as significant.

Bibliography

Conclusions

Results show that aerosol delivery with pMDI and VMN is higher when using a spacer in comparison with a T adapter for both adult and paediatric mechanical ventilation models (p < 0.05) and are consistent with previous studies. These results could be explained by the larger spacer internal volume decreasing the particles impaction within devices compared to T adapters.